Aab R. Abdullah, Rika Hernawati, Soni Darmawan


Bandung is one of the cities that are currently developing in terms of population, economy, and infrastructure in Indonesia. These developments will affect the ecological side by declining of the quantity and quality of land cover, especially vegetation. This condition is correlated with increasing air pollution in Bandung City. Therefore, doing research regarding a correlation analysis of the relationship between LST and Particulate Matter (PM) 10 in Bandung is important to do. This research aims to provide information about the conditions and changes in LST and PM in the Bandung by using primary data from Landsat 7 ETM+ and Landsat 8 OLI/TIRS images in 2008, 2018 and 2019 which have been corrected in terms of atmospheric radiometric and geometric. In the calculation of LST was using the Mono Window method that utilizes the thermal to find out the brightness of the temperature and multispectral bands found in Landsat images also used to determine
the vegetation index, proportion of vegetation and land surface emissivity whereas to determine. To estimation of PM10 algorithm using RGB reflectance and AOT, data can be concluded as a result between PM10 and LST. PM10 estimation results obtained the highest value of 299,7 ug/m3 in 2018 included in the dangerous category while the value of LST from 2008 to 2019 was increased in 1,8°C. The relation was positive relation in the year 2008, 2018 and 2019, which means that the assumption of the estimated LST value is low then the result of
PM10 is small, while the assumption value of the estimated LST is high, then the resulting of PM10 calculation is large.


Landsat; LST; AOT; PM10

Full Text:



Adiyanti, S. 1993. Kutub-Kutub Panas di Kota Jakarta. Tesis Magister Program Studi Ilmu Lingkungan, Program Pasca Sarjana, Universitas Indonesia.

Badan Pengelolaan Lingkungan Hidup Daerah. (2013). Pengertian Pencemaran Udara. Jakarta

Badan Pengelolaan Lingkungan Hidup Daerah. (2013). Zat – zat Pencemar Udara. Jakarta

Burgan, R. E.; Hartford R. A. (1993). “Monitoring Vegetation Greenness with Satellite Data” Gen. Tech. Rep. INT-297. Ogden, UT: US Department of Agriculture, Forest Service, Intermountain Research Station. 13p.

Carlson, T.N. dan Ripley, D.A. (1997). On the Relation Between NDVI, Fractional Vegeation Cover, and Leaf Area Index. Remote Sensing of Environment, vol. 62, 241-52.

Chrisdayanti, B., Suharsono, A. (2015). Peramalan Kandungan Particulate Matter (PM10) dalam Udara Ambien Kota Surabaya Menggunakan Double Seasonal Arima (DSARIMA). Institut Teknlogi Sepuluh November (ITS). Surabaya

Haq, Gary., Wha-Jin Han, Christine Kim, dan Harry Vallack. (2002). Benchmarking Urban Air Quality Management and Practice in Major and Mega Cities of Asia. Seoul: United Nations Environmental Programme.

Kementerian Lingkungan Hidup. (2010). Peraturan Menteri Lingkungan Hidup Nomor 12 tahun 2010 tentang Pelaksanaan Pengendalian Pencemaran Udara di daerah. Indonesia.

Lim, H.S., MatJafri, M.Z., Abdulla, K., Mohd, N.S., Sultan, A.S., 2004. Remote Sensing of PM10 From Lanndsat TM Image. 25th ACRS 2004 Chiang Mai, Thais Land.

Meng, Xia., Fu, Qingyan., Ma, Zongwei., Chen, Li., Zou, Bin., Zhang, Yan., Xue, Wenbo., Wang, Jinnan., Wang, Dongfang., Kan, Haidong., Liu, Yang. 2015. Estimating ground-level PM10 in a Chinese city by combining satellite data, meteorological information and a land-use regression model. School of Public Health, Fudan University, Shanghai. China.

Nadzri, O., Mohd, Z.M.J., Lim, H.S., 2010. Estimating Particulate Matter Concentration over Arid Region Using Satellite Remote Sensing: A Case Study in Makkah, Saudi Arabia. Modern applied Science 4: 131-142.

NASA. (2008). Landsat-8 / LDCM (Landsat Data Continuity Mission).

(http://directory.eoportal.org/get_announ ce.php?an_id=10001248).

NASA. (2008). LDCM (Landsat 8). (http://space.skyrocket.de/index_frame.h tm?http://www. skyrocket.de/space/doc_sdat/ldcm.htm).

Peraturan Pemerintah. 1999. Tentang Pengendalian Pencemaran Udara. Jakarta

Risalah, N. (2011). Keterkaitan Polusi Udara dan Suhu Permukaan Daratan serta Distribusinya di DKI Jakarta. Universitas Indonesia. Bogor.

USGS. (2012). Two Formulas That Can be Used to Convert DNs to Radiance. USGS. “Two Formulas That Can be Used to Convert DNs to Radiance”. URL: http://www.yale.edu/ceo/Documentation/Landsat_DN_to_Reflectance.pdf.

USGS. (2019) Using the USGS Landsat Level-1 Data Product.

Weng Q. (2001). A Remote Sensing-GIS Evaluation of Urban Expansion and its Impact on Surface Temperature in the Zhujiang Delta, China. Int. J. Remote Sensing.

Wisnawa, I Gede Yudi. 2008. Kemampuan Saluran Termal Citra Landsat 7 ETM+ dan Citra ASTER Dalam Memetakan Pola Suhu Permukaan di Kota Denpasar dan sekitarnya. Tesis. Yogyakarta: Universitas Gadjah


Wiwoka. (2013). Pola Suhu Permukaan dan Udara Menggunakan Citra Satelit Landsat Multitemporal. Pusat Pemanfaatan Pengindraan Jauh – LAPAN. Jakarta Timur.

DOI: http://dx.doi.org/10.24895/SNG.2019.4-0.1096

Article Metrics

Abstract view : 0 times
PDF - 0 times


  • There are currently no refbacks.

Copyright (c) 2020 Seminar Nasional Geomatika

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Prosiding Semnas Geomatika terindeks oleh:


Copyright of Badan Informasi Geospasial

Creative Commons License