Muhammad Haris Jonas, Henri Kuncoro


GPS is a positioning technology using satellites that can be used globally. However, GPS receiver devices are classified as an expensive technology so costs become a problem. Low cost dual frequency GPS module are recently developed as an alternative in positioning system, with a lower price and has the ability to capture dual frequency GPS signals. This study is intended to research about the positioning precision of low cost dual frequency GPS module measurement and compare its ability to geodetic GPS dual frequency receiver for static differential positioning method in various baseline length variations. The variations in the length of the baseline are 0.1, 2, 10, 20, 30, 40, and 50 km. There are two stages of measurement, the first measurement using geodetic GPS receiver and second use low cost GPS module with both interval are 15 seconds and 15̊ elevation mask angel. Then the results are compare with geodetic GPS result as a reference. Based on the results of measurement and comparison of data, the range of the horizontal precision values of the geodetic GPS receiver is 3-9 mm, while the GPS module ranges from 3-29 mm. For vertical precision geodetic GPS receiver is better than low cost GPS module with cm level. But in some baseline length low cost GPS module precision is superior.


Baseline; GPS; Low Cost; Precision; Radial; Static

Full Text:



Abidin, H. Z., J. Andrew & J. Kahar. (2011). Survei dengan GPS. Institut Teknologi Bandung, ISBN 978-602-9056-01-3.

Atunggal, D., B. Ma’ruf, A. Sunantyo, & C.A. Rokhmana. (2018). Evaluation on the Performance of Single and Dual Frequency Low Cost GPS Module Observation using Geodetic Antenna. Jurnal Communications in Science & Technology, 3(1), 9-14.

Badan Standardisasi Nasional. (2002). Standar Nasional Indonesia Jaring Kontrol Horizontal. SNI 19-6724-2002, Badan Informasi Geospasial.

Bramanto, B., H.Z. Abidin, I. Gumilar, M.D.A. Hernawan, T.P. Sidiq, & B. Wijayanto. (2016). On The Performance of a Single-Frequency Low-Cost GPS. FIT-ISI dan CGISE 2016, Yogyakarta.

Ghinali, C.D. & P.R. Wolf. (2006). Adjustment Computation: Spatial Data Analysis, Fourth Edition. John Wiley and Sons,USA.

Hakim, H.A. (2017). Analisis Low-Cost GPS untuk Kegunaan Pengukuran Teliti. Tugas Akhir Sarjana. Program Studi Teknik Geodesi dan Geomatika, Universitas Gadjah Mada, Yogyakarta.

Okorocha, C.V. & O. Olajugba. (2014). Comparative Analysis of Short, Medium, and Long Baseline Processing in the Precision of GNSS Positioning. Engaging the Challenges - Enhancing the Relevance. Kuala Lumpur, 16-21 June: FIG Congress.

Schwieger, V. & A. Gläser. (2005). Possibilities of Low Cost GPS Technology for Precise Geodetic Applications. From Pharaohs to Geoinformatics. Kairo, 16 April: FIG Working Week 2005 and GSDI-8.

Surakhman, A. (2017). Komparasi Kualitas Hasil Pengukuran Antara Receiver GPS Low Cost BAP Precision S852 dan Receiver GPS Tipe Geodetik Leica GS08 Dalam Variasi Kondisi di Lapangan. Tugas Akhir Sarjana. Program Studi Teknik Geodesi dan Geomatika, Universitas Gadjah Mada, Yogyakarta.

Wiyanti, Y., K. Fadila, D. Purnomo, & M.F.E. Asnawi. (2014). Analisis Pengaruh Sintilasi Ionosfer Terhadap Akurasi Penentuan Posisi pada Global Positioning System (GPS). Jurnal Mahasiswa TEUB, vol. 2 no. 6, Jurusan Teknik Elektro, Fakultas Tenik, Universitas Brawijaya.

DOI: http://dx.doi.org/10.24895/SNG.2019.4-0.1090

Article Metrics

Abstract view : 0 times
PDF - 0 times


  • There are currently no refbacks.

Copyright (c) 2020 Seminar Nasional Geomatika

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Prosiding Semnas Geomatika terindeks oleh:


Copyright of Badan Informasi Geospasial

Creative Commons License