KAJIAN WAHANA UDARA NIR-AWAK UNTUK AKUISISI DATA SURVEI PARAMETER BIOFISIK VEGETASI MANGROVE

Muhammad Sufwandika Wijaya, Yoniar Hufan Ramadhani, Aninda Wisaksanti Rudiastuti, Yudhistira Tri Nurteisa, Aswin Rahadian, Intan Pujawati, Sri Hartini

Abstract


Survei lapangan merupakan salah satu tahapan penting dalam proses pemetaan mangrove. Merujuk pada SNI 7717-2011 tentang Survei dan Pemetaan Mangrove, survei lapangan ditujukan untuk uji akurasi pemetaan dan mengumpulkan data parameter biofisik vegetasi mangrove. Data biofisik yang diambil dalam survei lapangan mangrove antara lain kerapatan tajuk, kerapatan pohon, profil mangrove, spesies mangrove, spesies dominan, dan diameter at breast height (DBH). Namun demikian, proses pengambilan data lapangan pada kenyataannya seringkali menemui rintangan. Kondisi medan dan aksesibilitas merupakan kendala besar dalam survei mangrove. Uji coba pemanfaatan wahana udara nir-awak (UAV) sederhana sebagai alternatif solusi dalam akuisisi data lapangan pada survei mangrove adalah tujuan dari kajian ini. Metode pengukuran parameter biofisik vegetasi mangrove menggunakan wahana udara nir-awak adalah fotogrametri, dimulai dari penentuan rencana terbang, pengolahan digital surface model (DSM) dan orthofoto, hingga analisis 3D untuk pengukuran biofisik vegetasi mangrove. Sesuai dengan Batasan kajian, secara kualitatif, informasi parameter biofisik mangrove seperti kerapatan tajuk, spesies dominan, dan profil mangrove dapat diinterpretasi dengan baik dari data UAV. Untuk beberapa parameter terkait DBH, spesies mangrove, dan kerapatan pohon perlu dilakukan kajian lebih lanjut.

Keywords


mangrove; UAV; wahana udara nir-awak;parameter biofisik

Full Text:

PDF

References


Afiati, R. N., Rustam, A., Kepel, T. L., Sudirman, N., Astrid, M., Daulat, A., … Pesisir, S. (2013). Karbon stok dan struktur komunitas mangrove sebagai, (Station 1).

Aksornkoae, S. (1993). Ecology and management of mangroves. Iucn, (May), 1–191. Retrieved from http://search.proquest.com/docview/16431991?accountid=28676

http://sfxeu11.hosted.exlibrisgroup.com/sfxslub?url_ver=Z39.882004&rft_val_fmt=info:ofi/fmt:kev:mtx:book&genre=book&sid=ProQ:Aquatic+Science+&+Fisheries+A

bstracts+(ASFA)+1:+Biological+Sciences+&

FAO. (2006). Mangrove Guidebook. Mangrove guidebook for Southeast Asia. https://doi.org/10.1086/346169

Gallego, J., Giovacchini, A., & Downie, M. (2016). Sampling transects for crop area estimation with drones ., (October), 1–7.

Jennings, S. (1999). Assessing forest canopies and understorey illumination: canopy closure, canopy cover and other measures. Forestry, 72(1), 59–74. https://doi.org/10.1093/forestry/72.1.59

Kamal, M., Phinn, S., & Johansen, K. (2014). Characterizing the spatial structure of Mangrove features for optimizing image-based mangrove mapping. Remote Sensing, 6(2), 984–1006. https://doi.org/10.3390/rs6020984

Magris, R. A., & Barreto, R. (2010). Mapping and assessment of protection of mangrove habitats in Brazil. Pan-American Journal of Aquatic Sciences, 5(4), 546–556.

Nagendran, S. K., Tung, W. Y., Ashraf, M., & Ismail, M. (2018). Accuracy assessment on low altitude UAV-borne photogrammetry outputs influenced by ground control point at different altitude. Journal of Earth and Environmental Science, 0–9.

Rokhmana, C. A., & Utomo, S. (2016). The Low-Cost UAV-Based Remote Sensing System Capabilities for Large Scale Cadaster Mapping. IOP Conference Series: Earth and Environmental Science, 47(1), 1–7. https://doi.org/10.1088/1755-1315/47/1/012005

Roosjen, P. P. J., Brede, B., Suomalainen, J. M., Bartholomeus, H. M., Kooistra, L., & Clevers, J. G. P. W. (2018). Improved estimation of leaf area index and leaf chlorophyll content of a potato crop using multi-angle spectral data – potential of unmanned aerial vehicle imagery. International Journal of Applied Earth Observation and Geoinformation, 66(October 2017), 14–26. https://doi.org/10.1016/j.jag.2017.10.012

Rudiastuti, A. W., Yuwono, D. M., Niendyawati, Pramono, G. H., & Rahmanto, B. D. (2016). Overview of National Thematic Data Integration (An Experience on One Map Mangrove Sulawesi). IOP Conference Series: Earth and Environmental Science, 47(1), 0–15. https://doi.org/10.1088/17551315/47/1/012012

Suhardiman, A., Tsuyuki, S., & Setiawan, Y. (2016). Estimating Mean Tree Crown Diameter of Mangrove Stands Using Aerial Photo. Procedia Environmental Sciences, 33, 416–427. https://doi.org/10.1016/j.proenv.2016.03.092

Torio, D. D. (2007). Modelling Canopy Density Variations from Remotely Sensed Data: Implication on Monitoring Floristic and Macro-benthic Properties of Mangrove Ecosystems Dante. International Institute for Geo-Information Science and Earth Observation.

Torres-Sánchez, J., López-Granados, F., Serrano, N., Arquero, O., & Peña, J. M. (2015). High-throughput 3D monitoring of agricultural-tree plantations with Unmanned Aerial Vehicle (UAV) technology. PLoS ONE, 10(6), 1–20. https://doi.org/10.1371/journal.pone.0130479

Umroh, Adi, W., & Sari, S. P. (2016). Detection of Mangrove Distribution in Pongok Island. Procedia Environmental Sciences, 33, 253–257. https://doi.org/10.1016/j.proenv.2016.03.076

Watson, J. D. (1928). Mangrove forests of the Malay Peninsula. Malay Forest Records. Retrieved from http://ci.nii.ac.jp/naid/10022586283/en/




DOI: http://dx.doi.org/10.24895/SNG.2018.3-0.1061

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Seminar Nasional Geomatika

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Prosiding Semnas Geomatika terindeks oleh:

 

Copyright of Badan Informasi Geospasial

Creative Commons License